AC Variable Speed Drives
For Water & Wastewater Applications

The drive for perfection
The IMO Jaguar VXA (Aqua) range...
Specifically designed to fulfil the exacting requirements of the water industry

In close consultation with water industry experts worldwide, the VXA (Aqua) drive has been developed to offer a three-pronged approach to reducing costs and wastage for those in the business of handling water.

Reducing Energy Usage

Whether it is simply a case of reducing speed to suit the demand, automatically stopping a pump during periods of low flow rate or one of the drives specific energy saving functions, energy conservation is always a major consideration in pumping systems.

Reducing Downtime

The IMO Jaguar VXA (Aqua) is a key element in the daily battle to keep plant operational for longer. With features such as anti-jamming, dry pump detection, through to features that reduce startup stresses on both the pumps and the system as a whole. Even the drive itself has been designed with a longer life expectancy.

Reducing Wastage & Seepage

With features such as linearization, which is designed to reduce excessive terminal pressures during periods of low flow and soft pressurizing features, the IMO Jaguar VXA is able to help reduce pipe bursts, water seepage and general stresses on the system.

<table>
<thead>
<tr>
<th>Inverter Capacity</th>
<th>EMC Filter</th>
<th>DC Reactor</th>
<th>Protective Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75kW to 90kW</td>
<td>Built-in</td>
<td>Built-in</td>
<td>IP21 / IP55</td>
</tr>
<tr>
<td>110kW to 710kW</td>
<td>Built-in</td>
<td>External</td>
<td>IP00</td>
</tr>
</tbody>
</table>

All Drives up to 90kW have integral EMC filter and DCR as standard and are available as IP21 or IP55 thus offering a wide range of installation options.

Slim Body

Same frame size for IP21 and IP55 variants, slim body design allows for compact installation.

Specific PUMP Functions

- Cascading Pump Control
- Dry pump protection
- End of curve protection
- Anti-jam
- Check valve protection
- Slow flow rate protection

Additional Functions

- 4 built-in PID controllers
- Torque vector control
- Programmable Logic Controller
- Password function
- Fire mode (forced operation)
- Real time clock / Timer function
- User friendly, informative keypad

Peace Of Mind

The IMO Jaguar VXA range has a 10 year design life backed by our unique 5 Year Warranty.
Optimum control for water and wastewater applications

Water purification plant, wastewater, clean water and sewage treatment plants

The IMO Jaguar VXA (Aqua) drive has specific water industry features that suit almost all of the applications found within water treatment plants. In addition to accurate process control the VXA can also significantly reduce energy usage and maintenance costs.

Pumping stations and pressure boosting stations

With cascading pump control, 4 built in PID controllers, dry pump detection, condensation prevention and linearization functions the VXA is ideally suited to this type of application. With the built in PLC and real time clock functions and multitude of communication options the drive can be installed as part of a system or used as a stand-alone controller.

Irrigation systems

Sharing many of the same requirements as remote pumping stations the VXA as a stand-alone controller is ideally suited to modern irrigation systems.

Blowers

The VXA is also equipped with many functions that control blowers which are used within water treatment facilities for aeration. These features include automatic energy saving operation and the ability to start onto a rotating load.

Other fluid-pressure applications

The IMO Jaguar VXA (Aqua) has features which are also suited to other fluid handling applications outside of the water industry such as:

- Oil pumping
- CNC coolant pumping
- Injection moulding machines
- Hydraulic presses
- Extruders
User-friendly, easy-to-read keypad

The following values can be shown on the enlarged LCD display*

1. Present value (PV)
2. Set value (SV)
3. Manipulate value (MV)
4. Frequency
5. Output current
6. Output voltage
7. Torque
8. Rotation speed
9. Power consumption
10. Cumulative energy

* User defined process value display options

Multi-language supported: 19 languages + user customised language

Real-time clock (RTC) provided as standard

Alarm information with date and time.
Previous 10 alarms are stored and displayed with date and time

Timer function:
- Ability to set up to four timers per week.
- Ability to set up to 20 holidays per year.
- Daylight saving feature

Example:
The operational schedule can be set using four independent timers when operation requirement varies depending on the day of the week.

Unit conversion

Unit conversion function between present value (PV) and set value (SV) values allows you to easily set data

<table>
<thead>
<tr>
<th>Function</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>No conversion</td>
<td>%</td>
</tr>
<tr>
<td>m³/h</td>
<td>°C</td>
</tr>
<tr>
<td>mbar</td>
<td>kW</td>
</tr>
<tr>
<td>kPa</td>
<td>mWG</td>
</tr>
<tr>
<td>mmHg</td>
<td>kW</td>
</tr>
<tr>
<td>in-wg</td>
<td>psi</td>
</tr>
<tr>
<td>°F</td>
<td>ppm</td>
</tr>
</tbody>
</table>
Series Name

Inverter output current

Protection structure: M:IP21 L:IP55 S:IP00

Input power supply: 4:400V

User-friendly, easy-to-read dedicated keypad

Multi-language support, HELP function feature, unit setting with SV and PV values, data copy (three types), detachable (can be attached on a control panel using an optional cable)

Capacitor Board

Outputs the capacitor life prediction signal determining capacitor level drop and cumulative running hours. This allows the user to determine replacement period.

Control Board

USB port equipped. Max. three types of built-in optional boards can be mounted at the same time. Optional battery connection for RTC. Various communications option functions

Control Terminal Block

A detachable control terminal block design. This allows the control PCB to be replaced easily without disconnecting cables.

Cooling Fan

Easy replacement just by simply removing and attaching the part. Life expectancy can be increased by controlling ON and OFF

EMC Filter

Effectively reduces noise. Integral to units of all capacities. Conforming to IEC61800-3

DCR

Effectively reduces harmonic noise. Conforming to IEC/EN61000-3-2 and IEC/EN61000-3-12. Provided as standard (models up to 90kW), and can be attached externally as an option (models from 110kW to 710kW)

Environmental Immunity

3C2, IEC60721-3-3 supported

Others

Support/analysis by custom built IMO Drive Loader software, RTC backup by battery (option)

Standard Equipment

<table>
<thead>
<tr>
<th>BACnet MS/TP</th>
<th>LonWorks</th>
<th>DeviceNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modbus RTU</td>
<td>Ethernet</td>
<td>CANopen</td>
</tr>
<tr>
<td>Metasys N2</td>
<td>Profibus</td>
<td>CC-Link</td>
</tr>
</tbody>
</table>
Specific Functions for Use in Water Treatment

Cascade Control

Cascading pump control is the function that controls multiple pumps with one inverter. The pumps are controlled with a combination of inverter drive and mains driven motors. This can be applied in a large-scale water treatment plant.

In cascading pump control, the signals of flow rate and pressure sensors are controlled by the PID controller built into the inverter. Each pump is driven either by the inverter or mains driven motor according to the switching signal from the inverter. The pumps are controlled only by the inverter when the discharge volume is small, the inverter then starts extra pumps one by one as the discharge volume increases in order to maintain the required discharge volume.

There are two different methods of control: inverter drive fixed method and inverter drive floating method.

Inverter drive fixed method (FIXED)

The system for this method is configured by combining the motor driven by the inverter (M0), motors that are mains driven (M1 to M8) and auxiliary motor (MA). The motor driven by the inverter is always fixed as motor M0. Mains driven motors are added one by one when the required discharge flow rate cannot be achieved with motor M0 only.

<table>
<thead>
<tr>
<th>MAX</th>
<th>1 Unit (Driven by inverter) + 8 Units (Mains driven) + 1 Unit (Auxiliary motor)</th>
<th>VXA-AQUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Sensor</td>
<td>Contactor Box</td>
<td>VX-AQUA</td>
</tr>
</tbody>
</table>

Contactor Box

Pressure Sensor
Inverter drive floating method (FLOATING)

The system for this method is configured by combining the motors that can be switched between inverter drive and mains driven motor (M1 to M4) and auxiliary motor that is mains driven (MA). The motors are driven by the inverter with variable speed control at start. When the desired discharge flow rate cannot be achieved with the first motor, operations FLOATING-1 or FLOATING-2 can be selected.

Inverter drive motor fixed method (FIXED)

FLOATING-1

The first motor: to be a mains operated motor.
Second and subsequent motors: operated by inverter drive
The inverter-driven motor is changed by rotation as the motors are added.

FLOATING-2

The first motor: remains inverter driven.
Second and subsequent motors: Mains driven.

Mutual Operation

The system can be configured without using a controller by connecting the inverters via communications. In this system if failure occurs to the master inverter, the next inverter is assigned as the master inverter. Wiring can be saved by using the inbuilt Modbus RTU communications.
Standard Specifications

<table>
<thead>
<tr>
<th>Output ratings</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable standard motor (rated output) [kW]1</td>
<td>0.75 1.5 2.2 4.0 5.5 7.5 9.6 11 15 18.5 22 30 37 45 55</td>
</tr>
<tr>
<td>Rated capacity [kVA]2</td>
<td>1.9 3.1 4.1 6.8 10 14 18 24 29 34 45 57 69 85</td>
</tr>
<tr>
<td>Voltage [V]3</td>
<td>3-phase, 380 to 480V (with Automatic Voltage Regulation function)</td>
</tr>
<tr>
<td>Rated current [A]</td>
<td>2.5 4.1 5.5 9.0 13.5 18.5 24.5 32 39 45 60 75 91 112</td>
</tr>
<tr>
<td>Overload current rating</td>
<td>110%-1 min (overload tolerated interval: compliant with IEC 61800-2)</td>
</tr>
<tr>
<td>Rated frequency [Hz]</td>
<td>50, 60Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input power supply</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main power supply (No. of phase, voltage, frequency)</td>
<td>3-phase, 380 to 480V, 50/60Hz</td>
</tr>
<tr>
<td>Control power supply auxiliary input (No. of phase, voltage, frequency)</td>
<td>Single phase, 380 to 480V, 50/60Hz</td>
</tr>
<tr>
<td>Voltage, frequency variations</td>
<td>Voltage: +10 to -15% (Unbalance rate between phases is with 2%)*4 Frequency: +5 to -5%</td>
</tr>
<tr>
<td>Required power supply capacity [kVA]</td>
<td>1.2 2.1 3.0 5.2 7.2 9.7 15 20 24 29 39 49 58 71</td>
</tr>
<tr>
<td>Rated input current [A]</td>
<td>1.6 3.0 4.3 7.4 10.3 13.9 20.7 27.9 34.5 41.1 55.7 69.4 83.1 102</td>
</tr>
<tr>
<td>Rated frequency [Hz]</td>
<td>50, 60Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Braking</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braking torque [%]5</td>
<td>20 10 to 15</td>
</tr>
<tr>
<td>DC braking</td>
<td>Braking starting frequency: 0.0 to 60.0Hz, Braking time: 0.0 to 30.0s, Braking level: 0 to 60%</td>
</tr>
</tbody>
</table>

*1) Applicable standard motors are the case for IMO 4-pole standard motors

*2) The rated capacity indicates the case of 440V ratings

*3) Output voltage cannot exceed the power supply voltage

*4) Interphase voltage unbalance ration [%] = max. voltage [V] - min. voltage [V]/3-phase average voltage [V]x67 (see IEC61800-3). When unbalance ratio is between 2 and 3% please use optional AC reactor (ACR)

*5) Average braking torque obtained by use of a motor (varies with the efficiency of the motor)
Outline Drawing

<table>
<thead>
<tr>
<th>Power supply voltage</th>
<th>Applicable standard motor (kW)</th>
<th>Inverter model</th>
<th>Outside dimensions (mm)</th>
<th>Mounting Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dwg. No.</td>
<td>W</td>
</tr>
<tr>
<td>3-phase 400V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>VXA2A5#-4E</td>
<td></td>
<td>A</td>
<td>150</td>
</tr>
<tr>
<td>1.5</td>
<td>VXA4A1#-4E</td>
<td></td>
<td>A</td>
<td>150</td>
</tr>
<tr>
<td>2.2</td>
<td>VXA5A5#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>3.7</td>
<td>VXA9#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>5.5</td>
<td>VXA13A5#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>7.5</td>
<td>VXA18A5#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>11</td>
<td>VXA24A5#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>15</td>
<td>VXA32#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>18.5</td>
<td>VXA39#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>22</td>
<td>VXA45#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>30</td>
<td>VXA60#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>37</td>
<td>VXA75#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>45</td>
<td>VXA91#-4E</td>
<td></td>
<td>A</td>
<td>203</td>
</tr>
<tr>
<td>55</td>
<td>VXA112#-4E</td>
<td></td>
<td>A</td>
<td>300</td>
</tr>
<tr>
<td>75</td>
<td>VXA150#-4E</td>
<td></td>
<td>A</td>
<td>300</td>
</tr>
<tr>
<td>90</td>
<td>VXA176#-4E</td>
<td></td>
<td>A</td>
<td>300</td>
</tr>
<tr>
<td>110</td>
<td>VXA210S-4E</td>
<td></td>
<td>A</td>
<td>530</td>
</tr>
<tr>
<td>132</td>
<td>VXA253S-4E</td>
<td></td>
<td>A</td>
<td>530</td>
</tr>
<tr>
<td>160</td>
<td>VXA304S-4E</td>
<td></td>
<td>A</td>
<td>530</td>
</tr>
<tr>
<td>200</td>
<td>VXA377S-4E</td>
<td></td>
<td>A</td>
<td>680</td>
</tr>
<tr>
<td>220</td>
<td>VXA415S-4E</td>
<td></td>
<td>A</td>
<td>680</td>
</tr>
<tr>
<td>280</td>
<td>VXA520S-4E</td>
<td></td>
<td>A</td>
<td>680</td>
</tr>
<tr>
<td>315</td>
<td>VXA585S-4E</td>
<td></td>
<td>A</td>
<td>680</td>
</tr>
<tr>
<td>355</td>
<td>VXA650S-4E</td>
<td></td>
<td>A</td>
<td>680</td>
</tr>
<tr>
<td>400</td>
<td>VXA740S-4E</td>
<td></td>
<td>A</td>
<td>680</td>
</tr>
<tr>
<td>500</td>
<td>VXA960S-4E</td>
<td></td>
<td>A</td>
<td>680</td>
</tr>
<tr>
<td>630</td>
<td>VXA1170S-4E</td>
<td></td>
<td>A</td>
<td>680</td>
</tr>
<tr>
<td>710</td>
<td>VXA1370S-4E</td>
<td></td>
<td>A</td>
<td>680</td>
</tr>
</tbody>
</table>

(P) (Protective structure) : M: IP21, L: IP55
S (Protective structure) : IP00

Body

![Body Diagram](A)

Keypad

![Keypad Diagram](B)
Outline Drawing

Basic configuration diagram
(Factory shipped condition: with SOURCE mode input and enable input function)
Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay output interface card - 7 Relay NO</td>
<td>OPC-G1-RY</td>
</tr>
<tr>
<td>Relay output interface card - 2 Pole C/O</td>
<td>OPC-G1-RY2</td>
</tr>
<tr>
<td>Analog input interface card</td>
<td>OPC-G1-AI</td>
</tr>
<tr>
<td>Analog current output interface card</td>
<td>OPC-G1-AO</td>
</tr>
<tr>
<td>CC-Link communications card</td>
<td>OPC-G1-CCL</td>
</tr>
<tr>
<td>DeviceNet communications card</td>
<td>OPC-G1-DEV</td>
</tr>
<tr>
<td>PROFIBUS DP communications card</td>
<td>OPC-G1-PDP</td>
</tr>
<tr>
<td>CANopen communications card</td>
<td>OPC-G1-COP</td>
</tr>
<tr>
<td>LonWorks communications card</td>
<td>OPC-G1-LNW</td>
</tr>
<tr>
<td>Ethernet communications card</td>
<td>OPC-G1-ETH</td>
</tr>
<tr>
<td>Pt100 temperature sensor input card</td>
<td>OPC-G1-PT</td>
</tr>
<tr>
<td>Battery</td>
<td>DPK-BP</td>
</tr>
</tbody>
</table>

The Jaguar Range

From our market leading CUB, VXR, VXG, VXH and VXA range of drives with varying functionality and power, IMO has the right frequency inverter to meet the needs of your application, whatever it might be. From a simple small pump or fan through to the most complex large scale hoists, you can be assured that IMO has the drive and the knowledge to meet your application needs.

The IMO CUB features a full range of functions, a compact body, simple operation, wide model variations and global compatibility. It will meet the needs of higher performance machines and equipment such as conveyors, fans, pumps, centrifugal separators and food processing machines, as well as the needs of system integration, energy saving, labour saving and total cost reduction.

With an extended range of functions, the IMO VXR features connectivity, compact body, wide model variations and global compatibility. The VXR with Dynamic Torque Vector Control sets new standards for vector controlled drives. It will meet the needs of high performance machines and equipment such as pumps, fans, conveyors, material handling machines, packaging, special machines and textile machines.

The Building Services specific VXH drive has been designed with energy saving in mind. Equally at home as part of a BMS system with its many inputs and outputs, or as a stand-alone solution with its 4 PID controllers, PLC and real time clock functions.

The VXA or "AQUA" drive has been designed to suit the demands of the water industry where application specific functions cascading pump control, anti-jam and dry pump detection need to be included.

The high performance VXG multi-function inverter boasts state-of-the-art technology, with control performance that has evolved to a new dimension. Control methods now include: PG Vector control, sensorless vector control, dynamic torque vector control and V/F Control. It meets the need of the most demanding drives applications such as hoisting, packaging, material handling, wood, textile and process machinery.
IMO Worldwide Offices

IMO Precision Controls Limited
1000 North Circular Road
Staples Corner
London NW2 7JP
United Kingdom
Tel: 020 8452 6444
Fax: 020 8450 2274
Email: sales@imopc.com
Web: www.imopc.com

IMO Jeambrun Automation SAS
Centre D’Affaires Rocroy
30, Rue de Rocroy
94100 Saint-Maur-Des-Fosses
France
Tel: 0800 912 712 (nº gratuit)
Fax: 0145 134 737
Email: sales@imopc.com
Web: www.imojeambrun.fr

IMO Automazione
Via Ponte alle Mosse, 61
50144 Firenze (Fl)
Italia
Tel: 800 930 872 (toll free)
Fax: 8000 452 6445
Email: sales@imopc.com
Web: www.imopc.it

IMO Canada
Unit 32 - B - North
18 Stratheam Avenue, Brampton
Ontario L6T 4Y2
Canada
Tel: 905 799 9237 (local)
Fax: 905 799 0450
Email: sales@imopc.com
Web: www.imopc.com

IMO Russia
Office № 4063
9, Zemlyanoy Val, 105064
Moscow
Russia
Tel: 8 800 100 8540 (toll free)
Fax: 8 800 100 8541
Email: sales@imopc.com
Web: www.imopc.com

IMO South Africa (Pty) Ltd
G16 Centurion Business Park
Montague Gardens
Cape Town 7441
South Africa
Tel: 021 551 1787
Fax: 021 555 0676
Email: info@imopc.co.za
Web: www.imopc.co.za

IMO Pacific Pty Ltd
1/34 Fallon Road
Landsdale
Perth WA 6065
Australia
Tel: 08 9302 5246 (local)
Fax: 08 9303 9908
Email: sales@imopacific.com.au
Web: www.imopacific.com.au

Errors and omissions excepted. Subject to change without notice. Information correct at time of print.