

TRAINING

Tutorial

Analogue I/O

Table of Contents

Table of Contents	2
Introduction	3
Analogue I/O type selection	4
Hardware Configuration	4
Software Configuration	6
Programming the Analogue I/O	8
Programming Example	8
Configuring the I/O	8
Ladder Logic Programming	9
Screen Editor Configuration	

Introduction

The purpose of this tutorial is to demonstrate the Analogue input / output capabilities of the i^3 . This tutorial will also display how to use the scaling function.

The i^3 integrated controller can, depending on the model chosen have up to 4 analogue inputs as with model i3A12X/10D03-SCH or, in the case of model i3A12X/13C14-SOH, have 2 analogue inputs and 2 analogue outputs.

The resolution of the individual I/O points is also dependant on the model selected. This ranges from 10 bit to 14 bit resolution for inputs and 12 bit resolution output for the outputs. The analogue value is represented by an integer value 0 - 32,767. An important point to remember is that the %AQ registers have other uses, i.e. they are used in setting up the PWM output and therefore the two physical outputs on the model i3A12X/13C14-SOH are addressed at %AQ09 and %AQ10.

Analogue I/O type selection

Hardware Configuration

The i^3 can have both voltage (0-10Vdc) and current (0-20mA and 4-20mA) input and output. To select the desired input, there are some hardware setting and software setting. Jumper pins need to be set that are located inside the casing, to access these jumpers, the back section of the case needs to be removed as shown in Figure 1.

Figure 1: Removing the i^3 Cover

Jumper bars requiring setting

Function JP2	i3A12X/10A01-SOO 20mA	i3A12X/10D03-SCH 20mA	i3A12X/10B04-SCH 20mA	i3A12X/20B05-SOH 20mA	i3A12X/13C14-SOH 20mA	All 10V
Channel 1	1-2	1-2	1-2	1-2	1-2	Open
Channel 2		3-4	3-4	3-4	3-4	Open
Channel 3		5-6			5-6	Open
Channel 4		7-8			7-8	Open

i3A12X/13C14-SOH:

Link No.	Function	20mA	10V	PT100	Thermocouple
JP2	AI 1	8-9	8-9	2-3	1-2
		11-12	11-12	5-6	4-5
				7-8	7-8
				10-11	10-11
JP3	AI 2	8-9	8-9	2-3	1-2
		11-12	11-12	5-6	4-5
				7-8	7-8
				10-11	10-11
JP4	OUTPUT 1	1-2	2-3		
		4-5	5-6		
		7-8	8-9		
	OUTPUT 2	10-11	11-12		
		13-14	14-15		
		16-17	17-18		

Software Configuration

In the software (i^3 configurator) the analogue I/O also needs to be set.

$m{i}^3$ i 3 Configu	irator -	[untitled1]				
🗟 File Edit	Program	Controller	Debug	Tools	Scre	ŧ	Click here to
<u>R</u>	T 2	I/O Con I/O Filte	figure rs			◀	configure the i^3 Model type
) 🗎 🖻 🗖	33	Set Targ	jet Netwo	ork ID			
A	в	Set Netv	vork Bau	d Rate	.		
		Set Loca	al Networ	k ID			
1%\$0007		Data Wa	atch				
2		Status					
		Diagnos	tics				
_		View/Se	t Clock				
3		Clear Me	emory				
		Idle/Sto	р				
4		Run/Mor	nitor				

	Module Configuration	×	Click on he
	I/O Map Module Setup		module set up
	Module Model: i3A12X/20805-SOH Description: 24DC in, 16DC out, 210-bit AI, 4 HSC, 2 PWM		
	TypeStarting RegisterEnding RegisterNumber of Recisters%I13232%Q12424%AI11212%AQ188		
	OK Cancel App	ly	
M	odule Configuration	×	
μ	I/O Map Module Setup	1	
	Digital In / Hsc Digital Out / Pwm		On this model there is no
box to edit the details	Analog In Analog Out		Analogue output
	OK Cancel 2-6oto-0	guration F Hold L	Output Mode .ast Value 0.10V 0.10V 0.10V
	Analog Input Configuration	×	42UmA
On this model we can select the type of input for two channels. The channels are independent and can be voltage or current	Channel 1: 420mA Channel 2: 010V 020mA 420mA Channel 4: Filter Constant:		0K Cancel
	IO ÷	ſ	Click OK to confirm selection

Programming the Analogue I/O

Once the analogue inputs have been set to match the external inputs to the controller we can call the analogue inputs using the addressing structure.

%AI1 – Analogue input 1 %AQ9 – Analogue output 1

and so on

Programming Example

Configuring the I/O

For example we can use an i^3 to read in an analogue speed reference and output an analogue speed reference to an inverter drive.

The input and output will be scaled to 0-100%. The user will be able to input a speed reference (0-100%) to output to the drive.

Using the i3A12X/13C14-SOH, this unit has 2x14 bit analogue inputs and 2x12 bit analogue outputs. The input will be set to 4-20mA and the output will be set to 0-10V. Note the output addresses are %AQ9 and %AQ10.

First steps prior to programming

- 1. Set the Hardware jumper pins to the correct position.
 - a. Jumper JP2 Link 8-9 (20mA) AI1.
 - b. Jumper JP4 Link 2-3 (10V) AQ9.
 - c. Power up the i^3 .
- 2. Open i^3 Configurator and Configure the I/O
 - a. Controller Menu and select Config I/O
 - i. Auto Config System
 - ii. Configure the Analogue I/O

Analog Input Configuration					
Channel 1:					
420mA]				
010V 020mA	1				
420mA					
100mV BT100 DIN BTD, 1/20 Deg. C					
Type J Thermocouple, 1/20 Deg. C					
Type K Thermocouple, 1/20 Deg. C					
Type IN Thermocouple, 1720 Deg. C					
Type E Thermocouple, 1/20 Deg. C					
Type R Thermocouple, 1/20 Deg. C					
Type B Thermocouple, 1/20 Deg. C					
Filter Constant:	_				
0 🛨					

1 - Goto: 0 IV Hold Last Value 2 - Goto: 0 IV Hold Last Value	0.10V 0.10V 0.20mA 420mA
--	-----------------------------------

Now we can program the ladder logic.

Ladder Logic Programming

Select a N/O contact and insert it at A1. Assign the contact to the internal bit %S7, Always ON (ALW_ON).

Now select the scale function from the Advanced Maths Functions and insert it in the same rung as the %S7 N/O Always On (ALW_ON) contact.

The analogue value ranges from 0 to 32676 and we want to scale the input to 0 to 100. Similarly with the output, we want to due the opposite.

Input		Output	
Scaling Element	×	Scaling Element	
Input			
Input: XAI0001	Name:	Input: %R0002	Name: AQ_Scaled 📃
Minimum: 0	Maximum: 32000	Minimum: 0	Maximum: 100
Output		Output	
Output: %R0001	Name: Ai1_scaled	Output: %AQ0009	Name:
Minimum: 0	Maximum: 100	Minimum: 0	Maximum: 32000
Type: INT	OK Cancel	Type: INT	OK Cancel

The analogue outputs register is also used for setting the PWM and the physical analogue outputs begin at %AQ09. Therefore for the model i3A12/13C14-SOH the analogue outputs will be %AQ9 and %AQ10.

The ladder logic should now look like this for both the analogue input and output scaling. To insert comments, right click in the margin of the Rung and select 'New Comment'.

(* Scaling the Analogue In Always On contact ensure	nput es Scali	ing Funciton is always
Scaling 0-100 to 0-32000	*)	
ALV_ON	Scale	
	int	
_%SUUU70-	min	
~Al0001 -	IN1	
32000-	max	
	:	
0-		Ai1_scaled L%₽0001
100-	may	/%/10001
(* Sealing the Analogue (utout	1
Always On contact ensure	es Scali	ing Funciton is always enabled.
Scaling 0-100 to 0-32000	*)	,
ALM ON	C I-	1
·	Scale	
AQ_Scaled %	min	
2800001 8- %B0002-	IN1	
100-	max	
100	man	
0-	min	
	Q	-%AQ0009

If we now Error Check () the ladder program; we will find there are no errors. Now we are required to configure an initial screen. Click the Screen Editor icon

Screen Editor Configuration

We are going to configure three screens:

- 1. Main menu
- 2. Input Speed, with actual input and scaled input
- 3. Output Speed, with a bar graph.

On the main menu we are going to enter 2 Screen Jump buttons, to jump to the input and output screens and a Static Text to display the title "Analogue Tutorial"

Screen Properties

Screen Jump 1	Screen Jump 2	Static Text
Address = 2	Address = 2	Font = San Serif 15
Attributes.	Attributes.	Text = "Analogue Tutorial"
No border or icon	No border or icon	
Legend = AI	Legend = AQ	Text = Centred

Screen 1.

On the Analogue Input screen we are going to display the actual analogue value in %AI01, the scaled analogue value and a button to jump back to the main menu.

Screen Properties.

Numeric Data 1	Numeric data 2	Screen Jump
Address = $\%$ R01	Address = % AI01	Address = 1
Data Centred, Not	Data Centred, Not	Attributes. Border and
Editable, 3 digits, % as	editable, 5 digits.	icon checked.
engineering units		
Legend = "I/P Speed Ref"	Legend = "AI1"	Legend = "Main"

Screen 2.

On the analogue output screen there is going to be a Jump Screen function to go back to the main menu, a numeric field to enter an output percentage for the speed reference and a bar graph to illustrate the percentage output.

Screen Properties.

Numeric Data	Bar Graph	Screen Jump
Address = $\%$ R02	Address = $\%$ R02	Address = 1
Data Centred, Editable, 3	Scale not displayed. Max =	Attributes. Border and
digits, % as engineering	100, $Min = 0$	icon checked.
units. $Min = 0$, $Max = 100$		
Legend = "Output"	Legend = ""	Legend = "Main"

Screen 3.

A final Error Check, before exiting the screen editor. With no errors we can now download the program.

After downloading the program, ensure you put the i^3 into RUN mode	
Run	Stop
Pau	se

Please see the Program "ana_tut1.csp"

Analogue I/O

IMO Precision Controls Limited 1000 North Circular Road Staples Corner, London NW2 7JP United Kingdom Tel: +44 (0)20 8452 6444 Fax: +44 (0)20 8450 2274 Email: imo@imopc.com Web: www.imopc.com

IMO Jeambrun Automation SAS 165 Rue Jean Jaures, 94700 Maisons Alfort Paris, France Tel: +33 (0)1 45 13 47 05 Fax: +33 (0)1 45 13 47 37 Email: info@imopc.fr Web: www.imopc.fr

IMO Deutschland Für weitere Einzelheiten zu IMO Agenten und Distributoren in Ihrer Nähe schreiben. Sie bitte ein E-mail an folgende Adresse: imo@imopc.com

IMO Italia Viale A. Volta 127/a 50131 Firenze, Italia Tel: +39 800 783281 Fax: +39 800 783282 Email: info@imopc.it Web: www.imopc.it

DRIVES

Jaguar VXM 0.37-500kW

Jaguar VXSM 0.37-7.5kW

Jaguar CUB 0.37-2.2kW

IMO Canada Unit 10, Whitmore Road Woodbridge, Ontario. L4L 8G4 Cananda Tel: + 1 905 265 9844 Fax: +1 905 265 1749 Email: imocanada@imopc.com

Cam Switches Din Terminals Drives Enclosures Fieldbus remote I/O Isolators & Switch Fuses MCB & RCD Motor Circuit Breakers Motor Control Gear Panel Meters Relays Signal Conditioning Sockets Timers Transformers & Power Supplies

Drives Intelligent Terminals/HMI Limit Switches Photoelectric Switches PLCs Proximity Switches Temperature Controls

Data Acquisition & Control Drives Intelligent Terminals/HMI Limit Switches Photoelectric Switches Proximity Switches PLCs Signal Conditioning Temperature Controls

Lightguards Safety Limit Switches

Safety Relays

All IMO products are tried, tested and approved to relevant international quality standards

Audible devices Chip-on-Board Device programmers LEDs & 7 seg. displays PCB Terminal blocks Relays - automotive Relays - power Relays - signal Switches

© IMO Precision Controls ltd.